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The averaged elastic constants of polycrystals can be found by
averaging the stresses (Voigt method [1]) or the strains (Reuss method
[2]). Comparison of the elastic moduli, averaged according to Voigt
and Reuss, with the experimental values shows that in the first case
averaging gives values that are too high, and in the second values
that are too low [3]. The reason for this is that direct averaging of
the moduli with respect to arbitrary orientations of the crystallites does
not take account of correlation effects. There are two ways of allow-
ing for such correlations between polycrystal grains.

1. In the Voigt scheme the stresses are averaged. Therefore to
calculate the correlation effects we use the equilibrium equation

S+ 1 =0y Gy g = V0 = 05y, [ 87y, (L. 1)

Here the repeated subscript summation convention is used.
Using Hooke's law

Sk = Miim®im, (1.2)
we can write the equilibrium equations in the form
Vihikmm T 1i=0 e =02 (uy m+up )y (L8)

where ey, is the strain tensor, uj is the displacement vector, and
Aikim =MNkm7 = Mmik is the elastic constant tensor,

Thus, in the Voigt scheme the problem reduces to averaging and
calculating the correlation increments to the elastic constant tensor.
For Reuss averaging it is necessary to write the differential equation for
the strain tensor, Such an equation is the definition [4] of the incom-
patibility tensor npq

EprmEqenrs,mn 1 Npg =0+ (1.4)

Here &, is the unit skew-symmetric tensor. For an ideal me-
dium in which there are no sources of internal stresses Mpq = 0 and (1. 4)

degenerates into the compatibility condition,

Using Hooke's law

€rs = SpgilSig (1.5)
we can rewrite Eq. (1.4) in the form
EprmEqsn ViV SrsinSax + Npg = 0. (1. 6)

Thus, in the Reuss scheme the problem reduces to averaging and
calculating the cormrelation increments to the elastic compliance ten-

$OT Spgike

The elastic moduli of a polycrystal of cubic structure were cal-
culated in [5] according to the Voigt scheme with account for pair
correlations between crystallites. Subsequent approximations must take
into account correlations of higher order—ternary, quaternary, etc.
However, this involves very laborious calculations and is complicated
by the lack of sufficient experimental data for choosing the ternary and
quaternary correlation functions. )

Clearly, it is better to follow the other path, that is, to ap-
proach the Voigt- and Reuss-averaged values of the elastic moduli
by taking into account the correlation effects in both calculating
schemes. Since the first steps of the approximation are the edsiest,
this approach enables one to reduce by countersteps the interval of
values of the elastic moduli of the polycrystal calculated by the dif-
ferent methods.

2. Below we calculate the effect of pair correlations between
the grains of a polycrystal of cubic structure using the Reuss scheme.
We start from Eq. (1. 8).

For a medium with cubic structure the elastic compliance tensor
has the form

WY
Spaite = 17055035 4 827 (88,5 1 8,18) +332-!6rj65j5i,j6k)‘ . (2.1
:

We represent the tensor sygjk in the form of a value <sygjp> av-
eraged over the polycrystal and a fluctuation component &sg;k (r).
Then, assuming that there is no texture, we get

Crgig? = sl&rsaik + 5 (6ri6sh' +88i) s (2.2)

1
Gsrsik =% Z a"iusiaiiqk.ﬁ 5 s (6r36ik + 6riéa'k + 5rk55i) » (2.3)
i
where aij; are the direction cosines between the crystallographic axes
and the coordinate axes. The constants sj, s;° and the two-index con-
stants sjj are related as follows:

51 = 51° 4 Yss3, s3 == 85° -+ Yssay (2.4)
s11 = 81° + 259° 4 s, 519 = 81°, sqq == 4sy°, (2. 5)
We substitute values of the tensor sygy in (1. 6). This gives
S prmEqrrSiimn T 258 prm®anSrs,mn = fpq, (2.6)
f pe= " Mpg— 8prm8qsnvmvn55rsikcik¢ 2.7y
We substitute in (2. 6) the relation
8pq 61:8 Bpn
EormBom = | &g 85 By (2.8)
1 Ymq 'Sms 6mn

and use the equation of motion (1.1). We then get
— (514 23} 8y, g — 299550 e+ (51 252) 8,615 i = Pps (2. 9)
Ppq = Fpg = 28880111
It is easy to see that when ¢ = 0 Eq. (2. 9) is a homogeneous

Beltrami equation. In fact, setting, for example, p =g =1 and keep-
ing in mind that

28 [ {5y + 250) =1 4 v, (2, 10)
where v is Poisson's ratio, we find
]
(1+v)a—me+Acx+ Ac=0 (=0, o .=0.), (2.11)

The remaining Beltrami equations are similarly obtained. Sum-
ming them, we see that Aa = 0 and may be omitted, which leads to
the general form of the Beltrami equations.

We now determine the reguiar Lpgji and random quik operators
from the equations

Lpgix = (514 280) 83y (V20,, —V, V) —25V%; 8y, (2.12)
quik = Bprmeqanvmvnl'ssrsik . (2.13)

Then Eq. (2. 9) may be written in the form
LpgirSik = — Apg T RpginSix . 2.14)

The function x4 is the external source of the field and is re-
lated to Tipq and fi as follows:

Kpg = Ty -+ 2530 (2. 15)

qui.i '

3, To calculate the correlation increment to the tensor <spgrs>
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it is first necessary to calculate the Green's tensor g;jm of the oper-
ator quik- This is found from the equation
quikgiklm = 51715‘1"‘5 (r), (3. 1)

The Green's tensor thus introduced enables us to write the solu~
tion of the inhomogeneous Beltrami equation

quikcik =Py (3.2)
in the form of a convolution
ik = Eiktm*Pim . (3.3)

We can convince ourselves of the validity of this by considering
the chain of equalities

LpginSit = Lpgir€ikim * Pim = SpBimd FV 2 @1 =9, . (3.4
where we have used the property of the &-function: 8* f = f.

To compute girpy, we use the Fourier integral transform

G (k) = E,g(r) e*rav (3.5)
g(r)= g%‘—,gc(k) ewrgyy (3.6

Then, substituting in (3. 1) the explicit value of the operator
Lpgik- in accordance with (2.12), we get

(51 + 239) (I‘pkq - k"qu) Cragmn + 2s‘szpq'ﬂm = 6mps'nq . (@B
Multiplying both sides by Spgr we find

1 S
Gtzmn="”pm v (3.8)

which, after substitution in (3.7), gives

. 1 s 51+ 2sq 6mn_
pamn = G52 Smpbng — 7 1 sa) k8 (Opg = 7phg)

‘ k
=),
("p=k)

We can pass from the transform back to the original using (3. 6)
and the integral

G (3.9)

1 .
ry S Rtk b eV, =7, (3.10)

This gives

1 81 + 282
88 pomn = 75 BmoBna” i ~ Zas (5 53 Byan (P 4i8pg — 7 pg)e (3. 11)

Hence, it is clear that the Green's function, as required, tends
to zero at infinity.

4. Representing the stress ojy in the polycrystal in the form of a
regular value <oj,> and a fluctuation component 80;, we can show
that, in the approximation in which only pair correlations between
crystallites are taken into account, from the inhomogeneous equation
(2. 14) there follows the following equation for the regular part of the
stress tensor [6F

{quik - <qursMrsunRuvik>] (B> = —%pq - (4.1)

Here M, denotes the integral Green's operator, which is re-
lated to the Green's function by the expression

M....GC

reurCur = Eraup * S

(4.2)

UU &
The first term on the left side of (4. 1) gives the usual Reuss aver-
aging, whereas the second takes into account the correlation effects.

Using (2. 15), we pass from the operator L ik back to the initial
Operator £nym€gsnVmVy. Moreover, we shall assume that the regular
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part of oy}, varies only slightly at distances for which comelation effects
still occur, This enables us to write (4. 1) in the form

sprmaqsnvmvn'srsik Cip> = —TNpq , (4.3)
where the effective elastic compliance tensor
Srsik = Spggpr. <68ramngﬂmah * Eajup’t:lvvuvva“"jlik>' (4. 4)

We determine the binary correlation function from the equation

DT (2 om €)= (85, () 85545 (1) (4.5)

Then the correlation increment may be written in the form

 prsmn ’ . _
Srsik = (S = — ngnab,uv {r—r) bjlik (r—1)dvV Eajubbly =

1 .
= g8 Cajubiv K Grinap (k) Kk B (k) dvy.

818 Yaj woT ik (4.8)

Here we substitute the explicit value of the Fourier transform of
the tensor Green's function (3. 9) and take into account that for cubic
symmetry

TSN, .
ik Omn =0+

We get

1 4 2s13+ 3851 + su
Srsik = $Spsix> — oy [1 3 M] A, 4.7

Here Aggik denotes the autocorrelation tensor

TSN .
Arsik = bipnir (0) = Ys55°D, g3y,

(4.8)
Dyging = 8,105 + 6rkasi - 2/36r56ik .
Hence it follows that the coirelation increment to the compres--

sion modulus K is zero. For the effective shear modulus p* we get the
following expression

8 1 2
W:a—g{i—”ﬁg P’R’ (811-—-512—-—’2‘ 844) X 4.9)

4 2s19+ 3511+ s
X[1 + 5 12513 1 8s11 +- 544 ]} !

where 1/pp is the value of the Reuss-averaged reciprocal shear modulus
without account for correlation effects:

1/ = Vs [4 (511 — s12) + 3saa] *

For comparison we present the results of a calculation of the cor-
relation increment using the Voigt scheme [5%:

2 ez 4+ 2en + e ]
- 3. 3(‘11 -+ 201:_1 - /1644 J} ’ (4' 11)

(4. 10)

. 1 {c11 — c12 — 2e44)? [

By  =py 1 — 25y

Here the value of the averaged modulus without allowance for
correlations

By = Ys (e — 12 4 3esd) o (4. 12)

As an example we give numerical data on the averaged shear
moduli with and without allowance for the correlation increments

bR, Apg/2up,

Metal py By By 1011dyne/bmz Apy 20, 0, B (exp.)
Cu 5.46 4.91 4.80 4.0 10 10 4.83
Ag 3.38 3.06 3.01 2.55 9.5 9.0 3.03
Au 3.10 2.84 2.83 2.41 8.4 8.7 2,78
Pb 1.04 0.89 0.83 0.67 i2 12 0.36

K 0.174 0.14 0.14 0.085 20 18 —

As the table shows, the correlation increments are approximately
the same for both schemes. Taking them into account substantially re-
duces the interval between averaged values of the shear modulus within
which lies the exact value of y.
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