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The averaged elastic constants of polycrystals can be found by 
averaging the stresses (Voigt method [I]) or the strains (Reuss method 

[2]). Comparison of the elastic moduli, averaged according to Voigt 

and Reuss, with the experimental values shows that in the first case 

averaging gives values that are too high, and in the second values 

that are too low [3]. The reason for this is that direct averaging of 

the moduli with respect to arbitrary orientations of the crystallites does 

Dot take account of correlation effects. There are two ways of allow- 

ing for such correlations between polycrystal grains. 

I.  In the Voigt scheme the stresses are averaged. Therefore to 
calculate the correlation effects we use the equilibrium equation 

q~,~ + / i  ~ O, %~,~ =-- V ~ q ~  - -  Ozi~/  Ox~:. (1.1) 

Here the repeated subscript summation convention is used. 
Using Hooke's law 

zi~ = )~i~clm elrn , (1.2) 

we can write the equilibrium equations in tlae form 

Vk~,iklrnUl,m@ / i : 0 ,  eim:l /2( t t l , rn~-urn ,  l ) .  (1.3) 

where elm is the strain tensor, u l is the displacement vector, and 

Xiklm = Xikml = X/mik is the elastic constant tensor, 

Thus, in the Voigt scheme the problem reduces to averaging and 
calculating the correlation increments to the elastic constant tensor. 
For Reuss averaging it is necessary to write the differential equation for 
the strain tensor. Such an equation is the definition [4] of the incom- 
patibility tensor ~?pq 

8prmeqsners,mn @ ~lpq : 0 �9 (1.4) 

Here s rm is the unit skew-symmetric tensor. For an ideal me- 
dium in w h i ~  there are no sources of internal stresses ~pq = 0 and (1.4) 
degenerates into the compatibility condition. 

Using Honke's ~aw 

ers = srsik~ik (1. 5) 

we can rewrite Eq. (1.4) in the form 

eprmgqs n ~ m ~ n  Srsik~ik @ ~]pq : 0 .  (1. 6) 

Thus, in the Reuss scheme the problem reduces to averaging and 
calculating the correlation increments to the elastic compliance ten- 

sor Srsik. 

The elastic moduli of a polycrystal of cubic structure were cal- 
culated in [5] according to the Voigt scheme with account for pair 
correlations between crystallites. Subsequent approximations must take 
into account correlations of higher order-ternary,  quaternary, etc. 
However, this involves very laborious calculations and is complicated 
by the lack of sufficient experimental data for choosing the ternary and 
quaternary correlation functions. 

Ciearly, it is better to follow the Other path, that is, to ap- 
proach the Voigt- and Reuss-averaged values of the elastic moduli 
by taking into account the correlation effects in both calculating 
schemes. Since the first steps of the approximation are the easiest, 
this approach enables one to reduce by countersteps the interval of 

values of the elastic moduli of the polycrystal calculated by the dif- 
ferent methods. 

2. Below we calculate the effect of pair correlations between 
the grains of a polycrystal of cubic structure using the Reuss scheme. 
We start from Eq. (1.6). 

For a medium with cubic structure the elastic compliance tensor 
has the form 

Srsik = Sl~ ~- s2 ~ (SriSsk + 8rkSs~ ) +SZESrjSsjSijSkj . (2 .1)  
i 

We represent the tensor Srsik in the form of a value <Srsik > av- 
eraged over the polycrystal and a fluctuation component 5Srsik (r). 
Then, assuming that there is no texture, we get 

< Sr,i~> = s16rs6i~ + s~ (8~6sk + 6s~6,i ), (2.2) 

t 
5Srsik = sa Z arlasjaiJakJ - -  "5 Sa (6rsgik ~- 5ri6~k @ 6rk6si), (2 .3)  

i 

where aij are the direction cosines between the crystallographic axes 
and the coordinate axes. The constants s i, si ~ and the two-index con- 
stants sij are related as f011ows: 

sl = sl  ~ q-  Vsss, ss -= s~* + Vssl ,  (2.4) 
sn = sl ~ + 2sl ~ + sa, sis = sx ~ s~ = 4s2 ~ (2. 5) 

We substitute values of the tensor Srsik in (1.6). This gives 

saevrmeqrn~ii,rna + 2s~S~rmgqsn~rs,mn = ]~q , (2 .6)  

# ~  = - -  ~lvq - -  e w . ~ % ~ V ~ V ~ 8 ~ i ~ .  (2.7) 

We substitute in (2. 6) the relation 

8vq 8~8 8vn 1 
eprmSqsn ~ ~rq ~rs ~rn 

~mq ~ms 8mn 

(2.8) 

and use the equation of motion (1.1). We then get 

- -  (Sl A- 292) ~ll,pq - -  2S~3pq,nn "~- ( sl -~ 2s2) 6pq~U,nn = ~ppq; (2.9) 

I~pq _~_ "]pq - -  2SS6 pq] i,i �9 

It is easy m see that when ~ =- O Eq, (2.9) is a homogeneous 
Beltrami equation. In fact, setting, for example, p = q = 1 and keep- 
ing in mind that 

2s~ / (s 1 q-  2st)  = i -'F v ,  (2 .  lO) 

where u is Poisson's ratio, we find 

0~ 
(t -}- ~) ~ -}- h~x "~ A~ ---- 0 (~ -- ~ii' ~x -- ~xx). (2.11) 

The remaining Bettrami equations are similarly obtained. Sum- 
ming them, we see that An = 0 and may be omitted, which leads to 
the general form of the Beltrami equations. 

We now determine the regular Lpqik and random %qik operators 
from the equations 

Lpqik = (Sl Jr- 2el) 6t~(VlSla q - - V r V q ) - -  2ss~zSi:o6~q , (2. 12) 

Rpqik ~ - -  B prm S qsn ~ m  ~ l~S  rsit . (2. 13) 

Then gq. (2.9) may be written in the form 

Lpqikaik  "~- - -  %pq Jr- Rpqikr . (2. 14) 

The function Xpq is the external source of the field and is re- 
lated to ~pq and fi as follows: 

%~q = ilia -4- 2slSpq/ i , i  �9 , (2. 15) 

8. To calculate the correlation increment to the tensor <Spqrs> 
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it is fi~t necessary to calculate the Green's tensor giklm of the oper- 
ator Lpqik. This is found from the equation 

Lpqii~gi~lr a : 8p/bqm8 (r) .  (3. 1) 

The Green's tensor thus introduced enables us to write the so!u- 
tion of the inhomogeneous Beltrami equation 

L v q i ~  = r (3.2) 

in the form of a convolution 

~ik ~ giklra*tPlra �9 (3.3) 

We can convince ourselves of the validity of this by considering 
the chain of equalities 

Lpqik~i~  = Lp~ikgik lrn  * ~ l m  : 8pqSlm8 (r) * (Plm = (~pq , (3.4) 

where we have used the property of the 5-function: 8" f = f. 

To compute gik/m we use the Fourier integral transform 

G (k) : ~ g (r) eikrdV, (3.5) 

_ i.i_ ~ _iktdV g ( r ) - -  8~s~G(k)e k . (3.6) 

Then, substituting in (3.1) the explicit value of the operator 
Lpqik, in accordance with (2. 12), we get 

(81 2 I- 28~) (kpkq -- k~pq) Gllmn -~- 2ssk~Gpqmn --- 6mpSnq " (3.7) 

Multiplying both sides by 5pq. we find 

t 6mn 
G~lmn = -- -k/2 (81 + s~) ' (3.8) 

which, after substitution in (8.7), gives 

t 81 ~-  28~ 6rnn 
G pqm n  ~ 2szk  z ~mp~nq - -  482 (81 -~  S~) k~ (Spq - -  apaq) (3.9) 

We can pass from the transform back to the original using (3.6) 
and the integral 

t [" ik 
- ~  ~ k - ~ k p k q e  r d V k  = r,pq . (3. 10) 

This gives 

t s~ + 28, 
8~gpq mn --  2~I 8mp~nqr,ii --  4S~ (81 -i- ~} 8ran (r,iifPq --  r,vq)" (3.11) 

Hence. it is clear that the Green's function, as required, tends 
to zero at infinity. 

4. Representing the stress Oik in the polycrystal in the form of a 
regular value <Oik> and a fluctuation component 8Oik, we can show 
that, in the approximation in which only pair correlations between 
crystallites are taken into account, from the inhomogeneous equation 
(2. 14) there follows the following equation for the regular part of the 
stress tensor [6]~ 

[Lvqi~ - -  <RpqrsMr~uvRuvi~ 51 <~iI~> = ~ l V q  �9 (4.1) 

Here Mrsuv denotes the integral Green's operator, which is re- 
lated to the Green's function by the expression 

MrsuvC~ur ~ grsuv * ~uv , (4.2) 

The first term on the left side of (4. 1) gives the usual Reuss aver- 
aging, whereas the second takes into account the correlation effects. 

Using (2. 15), we pass from the operator Lpqik back to the initial 
operator eprmeqsnVmV n. Moreover, we shall assume that the regular 
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part of Oik varies only slightly at distances for which correlation effects 
still occur. This enables us to write (4. 1) in the form 

eprmSqsn~mXYnSrsi~ <r = --  ~lpq, (4.3) 

where the effective elastic compliance tensor 

~qrstk ~ <Srsik> - -  <~Srsmngmnab * e a j u g b l v ~ u ~ v ~ S j l i k  5" (4.4) 

We determine the binary correlation function from the equation 

b rsmn r Bi~ ( --  r') = <6Srsmn (r) 6silt~ (r')>. (4.5) 

Then the correlation increment may be written in the form 

I gmnab,uv  , rsmn ' d " Srs~ - -  < S r s i ~ >  = - -  ( r - - r ) b f l i  ~ ( r - - r )  V 8aiuebl v =  
t r 

,, kukvBili~ (k) dI k. (4.6) } 

Here we substitute the explicit value of the Fourier transform of 
the temor Green's function (3.9) and take into account that for cubic 
symmetry 

rsmn - -  
bjlik 5rn n - -  0 �9 

We get 

Srsi~ :<srsik>--6~ [t + 4 2s l '+3sn+SU l A  (4.7) 
5 i 2 s l e -k8sn+s~A rsi~. 

Here Arsik denotes the autocorreiation tensor 

Drsik ~: 5ri~sk -~  5rk~si  - -  ~/SSrs6ik �9 

Hence it follows that the correlation increment to the compres-  
sion modulus K is zero. For the effective shear mgdulus g* we get the 
following expression 

i i t  
R I~R 

X [ t +  4 2s~ ,+3~n+s , , ] I  
' 5 12~sn -+8~177~ '3  / ~ 

where 1/g R is the value of the Reuss-averaged reciprocal shear modulus 
without account for correlation effects: 

l / ~t R = '/5 [4 (811 --  s1~) + 3s4d' (4. 10) 

For comparison we present the re~alt~ of a calculation of the cor- 
relation increment using the Voigt scheme [5]: 

{ 1 -  ( c n -  c12- 2c~)~ [ i -  2 3c~2 4- 2cl, + c,, i]~ 
t t v * =  ttv 25~v2 3cn -- 2c1~. =- 4err J~" (4. 11) 

Here the value of the averaged modulus without allowance for 
correlations 

~t v : 1/5 (On --  cx2 @ 3c~4) | (4. 12) 

As an example we give numerical data on the averaged shear 
moduli with and without allowance for the correlation increments 

Metal ~t v ~ ,  ~ t0ndyne/em ~ A~v/2~v % ~ (exp.) 

Cu 5.46 4.9i 4.80 4.0 10 1~) 4.83 
Ag 3.38 3.06 3.0t 2.55 9.5 9.0 3.03 
Au 3.t0 2.84 2.83 2.41 8.4 8.7 2.78 
Pb t .0!  0.89 0.83 0.67 i2 12 0.56 
K 0.t74 0.t4 0. t4 ().085 20 18 --  

As the table shows, the correlation increments are approximately 
the same for both schemes. Taking them into account substantially re- 
duces the interval between averaged values of the shear modulus within 
which lies the exact value of ~. 



82 Z H .  P R I K L A D .  M E K H ,  T E K H .  F I Z , ,  J U L Y - A U G U S T  1965 

REFERENCES 

1. W. Voig~, Lehrbuch der Kristallphysik, Berlin, p. 962, 1928. 
2, A, Reuss, "Berechnung der Fliebgrenze yon Mischkristatlen 

auf Grund der Plastizit~tsbedingung flir Einkristalle, " Z. Angew. Math. 
und Mech,, vol. 9, no. 49, 1929. 

3. I. Flimen and G. Dz. Dins, "Mechanical properties of met- 
als, " in: Rheology [Russian translation], IL, 1962, p, 249. 

4. J. D. Eshelby, Continuum Theory of Dislocations [Russian 

translation], IL, 1963. 
5. I. M. Lifshitz and L. I. Rozenveig, "Theory of elastic proper~ ~ 

ties of polycrystals, " Zh. ekspetim, i teor. fiz., vol. 16, no. 11, p. 
967, 1946. 

6. B. M. Darinskii and T, D, Shermergor, "Temperature re- 
laxation in cubic polycrysta!s, " Fiz. metallov i metallovedenie, vol. 
18, no. 5, p. 645, 1964. 

12 April 1965 Voronezh 


